
4 Complications slide 107

4.1 Introduction slide 108

Basic ideas

! Chapter 3 described ‘vanilla’ statistical analyses for rare events using the GEV, GPD and point
process methods.

! The basic derivations of these models assume that

X1, . . . ,Xm
iid
→ F, m → ∞.

! In applications these assumptions are generally false:

– m is finite;

– the background data may show trend, seasonality or other forms of non-stationarity, so
Xj → Fj ;

– time series are typically dependent, as cold weather, heatwaves, . . . occur over several days;

– some (maybe subtle) selection mechanism may apply, e.g., when an analysis is performed
immediately after a rare event.

! This chapter will describe methods for detecting and dealing with these problems.
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4.2 Nonstationarity slide 110

Vanilla analysis of maxima

! Our previous analyses supposed that

– block maxima satisfy Y1, . . . , Yn
iid
→ GEV(η, ε, ξ),

– exceedances of a threshold u satisfy X1 − u, . . . ,Xn − u
iid
→ GPD(σ, ξ),

but often we observe additional variation, either due to

– systematic changes in the background data (e.g., due to trend or seasonality), or to

– haphazard variation (e.g., due to weather conditions) that we have not accounted for.

! We’ll pass most time looking at systematic changes.

! For an example of haphazard variation, consider annual maximum daily rainfall
M = max(X1, . . . ,X365), where Xj is total rainfall on day j. On many days Xj = 0, so

M = max(X1, . . . ,XN ),

where N % 365 is the (random) number of rainy days. If N varies a lot from year to year, then
M might be much smaller in some years than in others, so the GEV is a poor model (remember
we derive it assuming that Xj → F , where F is continuous . . . ).
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A damp day in Venice
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Punta della Dogana and Santa Maria della Salute
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Annual maximum sea levels, 1887–2024

In October 2020, the MOdulo Sperimentale Elettromeccanico (MOSE) system was inaugurated: rows
of mobile gates are raised when particularly high tides are predicted, in order to limit how much water
from the Adriatic Sea can enter the Venetian lagoon. Data with MOSE operational are shown by
circles. The record: 196 cm in 1996.
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Ten largest annual sea levels, 1887–2024

In 1935, only the six largest values are available, and in 1922 only the largest value is available. The
data sources for 1887–1981 and 1982 onwards are different.
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Non-stationarity

! Obvious approach is to suppose that the GEV parameters can depend on external factors, i.e.,
Yt → GEV(ηt, εt, ξt), where the dependence might be specified as

ηt(β) = β0 + β1t,

ηt(β) = β0 +
K∑

k=1

{β2k→1 cos(2πkt/365) + β2k sin(2πkt/365)},

ηt(β) = β0 + β1x(t),

εt(β) = exp(β0 + β1t),

ξt(β) =

{
β1, t ≤ t0,
β2, t > t0,

where x(t) is some physical quantity that varies over time (e.g., ENSO, NAO, or global average
temperature).

! In applications we typically find that

– the location parameter η varies,

– the scale parameter ε might or might not vary,

– the shape parameter ξ is constant (it is difficult to estimate, and anyway often is regarded as
an intrinsic aspect of the background process).
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Parametric inference

! Example model specification: yt
ind
→ GEV(ηt, εt, ξt), where ηt, εt, ξt depend on parameters β.

! If y1, . . . , yn are assumed to be independent, then the log likelihood for β is

'(β) =
n∑

t=1

log g{yt; ηt(β), εt(β), ξt(β)},

where g is the GEV density.

! Maximization of '(β) yields maximum likelihood estimates and the observed information matrix,
from which we compute standard errors, confidence intervals, etc.

! We say that model M0 is nested within a model M1 if M1 reduces to M0 by fixing (say) d
parameters. Then the corresponding maximised log likelihoods satisfy '̂1 ≥ '̂0, and the likelihood
ratio statistic (or equivalently difference in deviances) is

W = 2('̂1 − '̂0).

! If M0 is adequate, then asymptotic likelihood theory implies that W
·
→ χ2

d, so values of W larger
than the 1− α quantile of the χ2

d distribution would lead to a rejection of M0 in favour of M1,
at significance level α.
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Model diagnostics

! If Yt → GEV(ηt, εt, ξt) for t = 1, . . . , n, then

Zt =
1

ξt
log

(
1 + ξt

yt − ηt
εt

)
iid
→ standard Gumbel,

i.e.,
P(Zt ≤ z) = exp{− exp(−z)}, z ∈ R, t = 1, . . . , n.

! If we replace the parameters by their estimates η̂t = ηt(β̂), etc., these results should still hold
(approximately) for the Gumbel residuals

ẑt =
1

ξ̂t
log

(
1 + ξ̂t

yt − η̂t
ε̂t

)
, t = 1, . . . , n.

! We use the ẑt in diagnostic plots, e.g.,

– the probability plot, showing
{
j/(n + 1), exp{− exp(−ẑ(j))}; j = 1, . . . , n

}
, or

– the quantile plot, showing
{(

− log [− log{j/(n + 1)}] , ẑ(j)
)
; j = 1, . . . , n

}
, or

plots of the ẑj against appropriate variables, to see if any patterns remain after fitting the model.
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Example: Venice sea levels, 1887–2019

! We ignore the data from 2020 onwards, when MOSE is operational.

! Analysis of maxima uses straight-line regression model,

ηt = β0 + β1xt, t = 1, . . . , n = 133,

with (x1, . . . , x133) = (1887 − 1900, . . . , 2019 − 1900)/100 chosen so that

– β0 equals the location parameter in the year 1900,

– β1 denotes the change in maximum sea level over 100 years,

! We fit two nested models, both with constant scale and shape parameters, i.e.,

M0 : ηt = β0, εt ⇒ ε, ξt ⇒ ξ,

M1 : ηt = β0 + β1xt, εt ⇒ ε, ξt ⇒ ξ.

! The code prints a ‘deviance’ D = −2'̂ (or nllh= −'̂) for the fitted model, which allows model
comparison using the likelihood ratio statistic:

w = 2('̂1 − '̂0) = D0 −D1.
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Example: Fitting models

y <- venice$y[venice$year<2020,1]

x <- (venice$year[venice$year<2020]-1900)/100

(fit0 <- evd::fgev(y))

Call: evd::fgev(x = y)

Deviance: 1193.487

Estimates

loc scale shape

106.517 20.050 -0.139

Standard Errors

loc scale shape

1.89487 1.29297 0.04412

Optimization Information

Convergence: successful ...

(fit1 <- evd::fgev(y,nsloc=x)) # nsloc specifies the x variable for the non-stationary location

Call: evd::fgev(x = y, nsloc = x)

Deviance: 1122.072

Estimates

loc loctrend scale shape

89.8087 35.0291 15.0816 -0.1023

Standard Errors

loc loctrend scale shape

2.34431 3.51218 0.96584 0.04071

Optimization Information

Convergence: successful ...
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Example: Venice sea levels, 1887–2019

Model-checking for fit to Venice maximum sea-level data. Left panel: Gumbel-scale residuals, ẑt.
Right: ordered ẑt plotted against Gumbel plotting positions, with pointwise (dot-dash) and overall
(solid) 95% confidence bands obtained by simulating 10,000 Gumbel samples.
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r-largest analysis

! The limiting joint density of the largest r order statistics Y1 > · · · > Yr in a large sample is

exp {−Λ(yr)}×
r∏

j=1

{
−Λ̇(yj)

}
, y1 > · · · > yr,

where Λ(y; η, ε, ξ) = {1 + ξ(y − η)/ε}→1/ξ
+ and Λ̇(y) = dΛ(y)/dy.

! In the Venice data there are rt (usually 10) largest values in each year, say

yt,1 > · · · > yt,rt, t = 1, . . . , n,

so if the data for different years are independent, and if we again use parameters ηt(β), εt(β),
ξt(β) in year t, the likelihood is

L(β) =
n∏

t=1

exp [−Λ{yt,rt ; ηt(β), εt(β), ξt(β)}]×
rt∏

j=1

[
−Λ̇{yt,j; ηt(β), εt(β), ξt(β)}

]
.

! To fit the model we just maximise the corresponding log likelihood, compute the observed
information matrix, and proceed as before . . .

! Of course this assumes that this is a reasonable model, which might be questioned: are the
background data really independent?
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r-largest: model-checking

! The transformed values Λ(Yj) form a Poisson process of unit rate on the positive half-line:

0 < Λ(Y1) < Λ(Y2) < Λ(Y3) < · · · ,

so
Λ(Y1), Λ(Y2)− Λ(Y1) Λ(Y3)− Λ(Y2), . . .

iid
→ exp(1).

! Recall that if E → exp(1), then − logE has a standard Gumbel distribution.

! Hence if the model is adequate and we replace the parameters by their estimates, the

− log
{
Λ̂(Yj)− Λ̂(Yj→1)

}
, j = 2, . . . ,

should be approximately independent Gumbel variables.

! The theory above is OK in principle, but if the observations are heavily rounded, the values of
Λ̂(Yj) might be very similar, so that the approach above fails. Alternatively we might note that

Λ(Yj) = Λ(Y1) +
j→1∑

i=1

{Λ(Yi+1)− Λ(Yi)} → Gamma(j, 1), j = 1, . . . , r,

and then compare the ordered values of the Λ(Yj) for different years with quantiles of the gamma
distribution.
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Venice data

! We shall use the r largest observations to fit several models:

M0 : ηt = β0, εt ⇒ ε, ξt ⇒ ξ,

M1 : ηt = β0 + β1xt, εt ⇒ ε, ξt ⇒ ξ,

M2 : ηt = β0 + β1xt + β2I(t > 1981), εt ⇒ ε, ξt ⇒ ξ,

M3 : ηt = β0 + β1xt + β3 cos(2πt/18.6) + β4 sin(2πt/18.6), εt ⇒ ε, ξt ⇒ ξ.

! Reasoning:

– we expect the baseline IID model M0 to be terrible (there is an obvious trend);

– we expect M1 to be much better than M1, as it allows for the trend;

– if M2 improves significantly on M1 then the data sources pre- and post-1982 disagree;

– M3 is suggested by the discussion in Pirazzoli (1982, Acqua Aria) who suggested that an
18.6-year astronomical cycle may influence the maxima.

! We could add trend in the scale and shape parameters, but will avoid this here.

! We take r = 2 for now.
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Example: Venice sea levels

Code to fit the models using the function rlarg.fit of the ismev package:

y <- venice$y[venice$year<2020,]

year <- venice$year[venice$year<2020]

X <- cbind(x,(year>=1982),cos(2*pi*year/18.6),sin(2*pi*year/18.6) )

> head(y) # 10 largest values for each year, starting in 1887

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

1 94 93 90 86 85 82 81 80 79 76

2 90 84 84 78 75 75 72 72 69 69

3 97 75 74 72 72 68 68 68 67 67

4 107 104 85 81 79 72 72 70 70 67

5 87 72 70 67 66 66 65 64 63 62

6 86 77 74 70 70 69 69 68 68 66

> head(X) # matrix of covariates for different fits

x

[1,] -0.13 0 -0.9541393 0.29936312

[2,] -0.12 0 -0.9994295 -0.03377414

[3,] -0.11 0 -0.9317526 -0.36309386

[4,] -0.10 0 -0.7587581 -0.65137248

[5,] -0.09 0 -0.5000000 -0.86602540

[6,] -0.08 0 -0.1847261 -0.98279005

fit0 <- ismev::rlarg.fit(xdat=y, r=2)

fit1 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1)) # mul says which columns of X to use

fit2 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,2))

fit3 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,3,4))
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Fits of M0 and M1

> fit0 <- ismev::rlarg.fit(xdat=y, r=2)

$conv

[1] 0

$nllh

[1] 1035.521

$mle

[1] 112.1400606 18.3991733 -0.1485854

$se

[1] 1.48482972 0.80384786 0.03128211

> fit1 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1))

$model

$model[[1]]

[1] 1

$model[[2]]

NULL

$model[[3]]

NULL

$link

[1] "c(identity, identity, identity)"

$conv

[1] 0

$nllh

[1] 973.297

$mle

[1] 93.946101 31.725728 14.160470 -0.103406

$se

[1] 1.68660910 2.42460867 0.65001011 0.03125164
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Fits of M2 and M3

fit2 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,2))

$model

$model[[1]]

[1] 1 2

...

$conv

[1] 0

$nllh

[1] 969.336

$mle

[1] 91.7010233 41.0735757 -9.7734237 13.8874345 -0.1025608

$se

[1] 1.84707056 4.05490122 3.40265002 0.64056193 0.03303069

> fit3 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,3,4))

$model

$model[[1]]

[1] 1 3 4

...

$conv

[1] 0

$nllh

[1] 973.0675

$mle

[1] 93.8443140 31.9199292 -0.4317245 -0.7943716 14.1372635 -0.1050128

$se

[1] 1.69570726 2.44300955 1.36448615 1.34041204 0.64842570 0.03166116
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Example: Venice sea levels, 1887–2019

Summaries of fitted models for Venice sea level data analysis, with estimatesSEs:

Model r −2'̂ ξ ε (cm) β0 (cm) β1 (cm/century) β2 (cm) β3 (cm) β4 (cm)
M1 1 1122.07 −0.1020.041 15.10.97 89.82.3 35.03.5
M1 2 1946.59 −0.1030.031 14.20.65 94.01.7 31.72.4
M1 3 2605.49 −0.1060.025 13.30.52 95.91.4 31.51.9
M1 4 3185.07 −0.1040.022 12.80.46 96.81.3 31.31.7
M1 9 5263.20 −0.0900.016 11.50.36 98.21.0 30.31.1

M0 2 2071.04 −0.1490.031 18.40.80 112.11.5
M1 2 1946.59 −0.1030.031 14.20.65 94.01.7 31.72.4
M2 2 1938.67 −0.1030.033 13.90.64 91.71.9 41.14.0 −9.83.4
M3 2 1946.14 −0.1050.032 14.10.65 93.81.7 31.92.4 −0.431.46 −0.791.34

M4 2 1924.37 0.0570.063 10.60.87 93.22.0 40.04.3 −8.43.6

Note that:

! the log likelihoods are only comparable for the same values of r, because different values of r use
different subsets of the data;

! if the data were independent, we’d expect the SEs for r = 1 to reduce by factors of roughly 2 and
3 for r = 4 and r = 9;

! there is strong evidence for trend (surprise!), a change due to the data sources, and ξ < 0;

! there is no evidence of the astronomical cycle.
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Example: Venice sea levels, 1887–2019
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Largest ten annual sea levels at Venice, with fits from models M0 (red), M1 (blue), M2 (purple),
and M3 (green), when r = 2.
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Example: Venice sea levels, 1887–2019
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Residual plots for fit of M1 with r = 2: Top row: comparison of Λ̂(yj) with corresponding gamma

distributions for j = 1, 2, 3. Bottom row: comparison of Λ̂(yj+1)− Λ̂(yj) for j = 1, 2, 3. The model
does not seem to fit very well!
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Example: Venice sea levels, 1887–2019
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Residual plots for fit of M2 with r = 2: Top row: comparison of Λ̂(yj) with corresponding gamma

distributions for j = 1, 2, 3. Bottom row: comparison of Λ̂(yj+1)− Λ̂(yj) for j = 1, 2, 3. The model
does not seem to fit very well!
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Haphazard variation

! Above we modelled systematic variation by allowing the parameters to depend on known
quantities.

! There may be haphazard variation that can be modelled by adding extra randomness.

! Suppose that conditional on ε, the data have rate εΛ(y), where ε → Gamma(ν, 1/ν), i.e.,

f(ε) =
νν

Γ(ν)
εν→1e→νε, ε > 0, ν > 0,

which is the usual gamma density with parameters α = ν, λ = ν, so E(ε) = α/λ = 1,
var(ε) = α/λ2 = 1/ν → 0 as ν → ∞. Hence the baseline model corresponds to ν = ∞.

! The marginal density for Y1 > · · · > Yr is then

f(y1, . . . , yr) =

∫ ∞

0
f(y1, . . . , yr | ε)f(ε) dε = · · · =

r∏

j=1

{−Λ̇(yj)}
Γ(ν + r)

Γ(ν)νr
1

{1 + Λ(yr)/ν}
ν+r ,

so in particular the maximum has density

f(y1) = {−Λ̇(y1)}
1

{1 + Λ(y1)/ν}
ν+1 ,

i.e., a model with parameters (η, ε, ξ, ν), where ν → ∞ gives the basic model.
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A better model?

! Take r = 2 and fit

M4 : ηt = β0 + β1xt + β2I(t > 1981), εt ⇒ ε, ξt ⇒ ξ, ν,

gives the results shown on slide 128:

– there is a big reduction in −2'̂ , so the model is a clear improvement on the others: it is
worthwhile to include ν;

– ν̂ = 1.720.63, giving strong evidence of overdispersion relative to the baseline model, with ε
having standard deviation ν̂→1/2 = 0.76;

– the estimates of the βs are similar, but ε̂ is smaller and now ξ̂ ≈ 0, because including ν
accounts for some of the variation not accounted for in the other models;

– most of the standard errors are larger, because of the additional variation that ν
accommodates.

! Residual plots on the next slide are (somewhat) better, though the largest values are still too big
relative to the model.
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Example: Venice sea levels, 1887–2019
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Residual plots for Venice data fit of M4 with r = 2: Top row: comparison of Λ̂(yj) with

corresponding F distributions for j = 1, 2, 3. Bottom row: comparison of Λ̂(yj+1)− Λ̂(yj) for
j = 1, 2, 3. The model fits better than before, but still the largest values are not well modelled.
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Measures of risk

! Under non-stationarity the quantiles and thus the return levels vary with time, so the
interpretation as ‘the level exceeded once on average every T years’ needs thought . . .

! Suppose there are m IID background observations in each block (year, say), but that their
distributions Ft differ for the different blocks, and let MT be the maximum for T blocks.

! If the maximum in year t has GEV distribution Gt, then Ft ≈ G1/m
t , and we solve

1− p =

{
T∏

t=1

Ft(xp)

}1/T

=

{
T∏

t=1

G1/m
t (xp)

}1/T

= P(MT ≤ xp)
1/(mT ).

! Likewise, in the POT setup, we suppose that independent observations Xj have thresholds uj,
exceedance probabilities puj and GP distributions Hj(x) = 1−Hj(x), and then solve

1− p =




mT∏

j=1

{
1− pujHj(xp − uj)

}



1/mT

= P(MT ≤ xp)
1/(mT ).

! Note that

– P(X > xp) will vary over time, so xp may not be a very useful summary of risk,

– both formulae reduce to the previous ones when the data are stationary,

– there are no explicit formulae for xp, which must be found numerically.

http://stat.epfl.ch slide 135

70



Comments

! Similar techniques are applicable for the threshold exceedance and point process models, but the
threshold may need to be time-varying and thus needs care.

! Using the r-largest model may be preferable, as the threshold is replaced with a choice of r.

! Under the GPD, changing the threshold u ,→ u′ changes the scale parameter:

σu ,→ σu′ = σu + ξ(u′ − u),

so, for example, the formulation
(σu, ξ) = (g(x1), h(x2))

at threshold u will become

(σu′ , ξ) =
(
g(x1) + h(x2)(u− u′), h(x2)

)
,

at threshold u′, so interpretation depends on threshold—undesirable.

! GEV, r-largest and Poisson process fits use the parameters (η, ε, ξ), invariant to type of model,
which is preferable.

! In some investigations it is preferable to use the GP model: do increasing rainfall maxima come
from increases in the number of days with heavy rainfall, but no changes in the amounts, or
increased amounts when it rains?
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4.3 Dependence slide 137

Modelling issues

! Environmental time series data typically show:

– long–term trends (e.g., gradual climatic change);

– seasonality (e.g., annual cycles in meteorology);

– other forms of non–stationarity (e.g., the effect of ENSO or NAO); and

– short term dependence (due to volatility, storms, . . . ).

! We have discussed non-stationarity. Now we discuss dependence. In brief:

– the previous limiting theory for maxima also applies, with small changes, provided long-range
dependence of extremes is sufficiently weak; but

– clustering of extremes due to short range dependence arises and must be dealt with.

! If the background data were independent, then the indicators I(Xt > u) would be IID Bernoulli
variables with probability pu, say, and thus

– for any h = 1, 2, . . . we would see

P(Xt+h > u | Xt > u) = P(Xt+h > u) = pu;

– intervals between exceedances would be IID geometric variables with mean 1/pu
(approximately exponential for small pu).
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Example: Eskdalemuir rainfall
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These data show:

! apparent stationarity (with small seasonal changes?);

! long-range independence (rain in 1975 is independent of rain in 1980 . . .);

! short-range dependence, owing to clustering of hours with heavy rain?

It seems safe to assume weak dependence of extremes at long ranges, but we need to allow for local
dependence.
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Extremogram
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The extremogram for a stationary time series {Xt} estimates

πh(u) = P(Xt+h > u | Xt > u), h = 1, 2, . . . .

Independent data would have πh(u) ⇒ P(Xt > u) for all h (blue line in picture, upper 95% point is
red line).

! This is the analogue of the ACF in conventional time series analysis,

! estimated using frequencies in place of probabilities —

! beware poor sampling properties of π̂h(u) (so don’t worry about values for high lags).
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Intervals between exceedances

Interval
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The intervals between exceedances should be approximately exponentially distributed, but we see too
many small intervals, due to clustering.
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Definitions

Definition 19 A time series {Xj} is said to be (strictly) stationary if, for any finite subset A of Z,
the sets of variables XA and Xh+A have the same distribution for all h ∈ Z. In particular this means
that the marginal distribution of Xj is invariant to location shifts, i.e.,

P(Xj ≤ x) = F (x), j ∈ Z, x ∈ R.

Definition 20 The matching series for a stationary time series {Xj} with Xj → F is the

independent series {X∗
j } for which X∗

j
iid
→ F .

Definition 21 If F is a continuous CDF then {um} is a threshold sequence (for F ) if there exists
Λ ∈ (0,∞) such that limm→∞m{1− F (um)} = Λ.

! If M = max(X1, . . . ,Xm) where Xj
iid
→ F , and if the extremal types theorem (ETT) applies for

sequences {am} > 0 and {bm}, then taking um = bm + amx gives

Λm(x) = m{1− F (um)} = m{1− F (bm + amx)} →

(
1 + ξ

x− η

ε

)→1/ξ

+

= Λ(x),

say, so {um} is then a threshold sequence if Λ(x) > 0.

! If there is no Λ for which a threshold sequence exists, then the ETT does not apply.
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D(un)

The usual condition used to impose near-independence of distant extremes is D(un):

Definition 22 Let A,B be subsets of {1, . . . , n} such that maxA < minB − l for some positive
integer l, and let MA ≤ u denote the event maxi∈AXi ≤ u, etc. Then D(un) is satisfied if

|P(MA ≤ un,MB ≤ un)− P(MA ≤ un)P(MB ≤ un)| ≤ α(n, l),

where α(n, ln) → 0 for some sequence ln = o(n) as n → ∞.

Under D(un), maxima of subsets that are sufficiently separated are almost independent, where
‘sufficiently separated’ means that as n → ∞, the gap ln between A and B satisfies ln/n → 0.

Theorem 23 Let X1, . . . ,Xn be a sequence from a stationary series with marginal distribution F
that satisfies D(un) for a threshold sequence un = bn + anx. Then if

P {max(X1, . . . ,Xn) ≤ un} → G(x), n → ∞,

where G is non-degenerate, G is a GEV distribution.
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Idea of Theorem 23

! We split X1, . . . ,Xn into kn blocks of lengths rn, where kn, rn → ∞ as n → ∞;

! we ensure that the block maxima are at least ln observations apart, where ln → ∞, so if D(un)
applies these maxima become independent for large n;

! then we apply the ETT to the kn (nearly independent) block maxima, and show that if these have
a limiting distribution, it must be GEV.
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Implications of Theorem 23

! The assumptions of Theorem 23 are weak, so it should hold in many applications.

! Hence we aim to understand the effect of local dependence by studying the properties of the
maximum of a ‘short’ block X1, . . . ,Xrn of neighbouring observations, which we compare with
the maximum of an independent series {X∗

j } with the same marginal distribution as {Xj}.

! Let X∗
j

iid
→ F , where Xj → F , i.e., F is the marginal distribution of {Xj}, and let

M∗
n = max(X∗

1 , . . . ,X
∗
n), Mn = max(X1, . . . ,Xn).

! We first consider an example.

Example 24 (Moving maximum process) Let Zj
iid
→ F (z) = exp (−1/z) for z > 0, and for a ≥ 0

define
X0 = Z0, Xj = (a+ 1)→1 max(aZj→1, Zj), j = 1, . . . , n.

Show that
P(Mn/n ≤ x) → P(M∗

n/n ≤ x)θ, n → ∞,

where θ = max(1, a)/(a + 1) lies in the interval [1/2, 1].
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Note to Example 24

! The marginal distribution of Xj is unit Fréchet:

P(Xj ≤ x) = P{aZj→1 ≤ (a+ 1)x,Zj ≤ (a+ 1)x}

= exp

{
−

a

(a+ 1)x

}
exp

{
−

1

(a+ 1)x

}
= exp(−1/x), x > 0,

! If X∗
1 ,X

∗
2 , . . . are independent unit Fréchet variables and M∗

n = max(X∗
1 , . . . ,X

∗
n), then

P(M∗
n/n ≤ x) = [exp{−1/(nx)}]n = exp(−1/x),

whereas Mn = max(X1, . . . ,Xn) satisfies

P(Mn/n ≤ x) = P(X1 ≤ nx, . . . ,Xn ≤ nx)

= P{aZ0 ≤ (a+ 1)nx,Z1 ≤ (a+ 1)nx, aZ1 ≤ (a+ 1)nx, . . . , Zn ≤ (a+ 1)nx}

= P{aZ0 ≤ (a+ 1)nx}




n→1∏

j=1

P{Zj ≤ (a+ 1)nx/max(1, a)}



P{Zn ≤ (a+ 1)nx}

because the Zj are independent. This implies that

P(Mn/n ≤ x) = exp

{
−

a

(a+ 1)nx

}[
exp

{
−
max(1, a)

(a+ 1)nx

}n→1

exp

{
−

1

(a+ 1)nx

}

= exp (−θn/x) ,

where

θn =
a+ 1 + (n− 1)max(1, a)

n(a+ 1)
→ θ =

max(1, a)

a+ 1
∈ [1/2, 1], n → ∞.

! Hence
P(Mn/n ≤ x) → exp(−θ/x) = P(M∗

n/n ≤ x)θ, n → ∞,

so although Xj
D
= X∗

j ,

P(M∗
n ≤ z)

.
= P(Mn ≤ z)1/θ ≤ P(Mn ≤ z),

i.e., Mn is stochastically smaller than M∗
n.
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Moving maxima

Realisations of the moving maximum process of Example 24 with a = 0, 0.8, 1, 1.25. In each case the
marginal distribution is unit Fréchet. The maxima show increasing clustering as a → 1.
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Effect of local dependence

Theorem 25 Let {Xj} be a stationary process such that Xj → F and let X∗
j

iid
→ F . Set

Mn = max(X1, . . . ,Xn), M∗
n = max(X∗

1 , . . . ,X
∗
n) and let {an} > 0 and {bn} be sequences of real

numbers. Then there exists a non-degenerate distribution function G such that

P {(Mn − bn)/an ≤ y} → G(y) = exp{−Λ(y)}, n → ∞,

if and only if

P {(M∗
n − bn)/an ≤ y} → G∗(y) = exp{−Λ∗(y)}, n → ∞.

If so, G(y) = {G∗(y)}θ or equivalently Λ(y) = θΛ∗(y). We call θ ∈ (0, 1] the extremal index.

! As G∗ must be GEV(η∗, ε∗, ξ∗), say, G is also GEV, with parameters

ξ = ξ∗, ε = ε∗θξ, η = η∗ + ε∗(θξ − 1)/ξ ≤ η∗ :

– the shape parameter is unchanged by the dependence but η < η∗, and

– Mn is stochastically smaller than M∗
n, i.e., dependence tends to reduce the sizes of the

extremes for a series of given length, because

lim
n→∞

P(Mn ≤ bn + any) = G(y) = {G∗(y)}θ ≥ G∗(y) = lim
n→∞

P(M∗
n ≤ bn + any).
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Implications

! As m → ∞ for independent data, the rescaled intervals Tm/m between exceedances are
independent and Poisson process properties imply that

P(Tm/m ≤ s) → P(S ≤ s) = 1− e→λs, s ≥ 0.

! In the corresponding dependent case it can be shown that

P(Tm/m ≤ s) → P(S ≤ s) = 1− θe→λθs, s ≥ 0,

i.e., in the limit,

– exceedances arise in clusters of mean size 1/θ ∈ [1,∞),

– θ is the probability that a randomly-chosen observation is the last of a cluster;

– the expected interval E(S) between exceedances is unchanged,

– but E(S | S > 0) → 1/(θλ), so the mean interval between clusters increases by 1/θ,

– the maximum of m dependent data has the same limiting distribution as the maximum of
mθ ≤ m independent data.

! In fact a cluster maximum has the same limiting distribution as a randomly-chosen exceedance, so
there is no bias in fitting the GPD only to cluster maxima, if we can identify clusters . . .
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Note to Implications

! In the independent case, consider exceedances of a threshold sequence um = bm + amu. As the
Xj are independent and the process is stationary, the interval Tm between two successive
exceedances satisfies

P(Tm > k) = P(X1 ≤ um, . . . ,Xk ≤ um | X0 > um)

= P(X1 ≤ um, . . . ,Xk ≤ um)

= F (um)k

= {1− Λm(u)/m}k , k ∈ N,

where Λm(u) = m{1− F (um)} → Λ(u) ⇒ λ, say, as m → ∞. For any s > 0, -ms./m → s as
m → ∞, so

P(Tm/m > s) = P(Tm > ms)

= P(Tm > -ms.)

= {1− Λm(u)/m}'ms(

→ exp(−λs), s > 0.

Hence Tm/m
D
−→ S → exp(λ).

! In the dependent case, we argue heuristically as follows. Let C denote the event that the
exceedance at j = 0 is the last exceedance in a cluster. Then

P(Tm > k) = P(X1 ≤ um, . . . ,Xk ≤ um | X0 > um)

= P(X1 ≤ um, . . . ,Xk ≤ um | C,X0 > um)P(C | X0 > um)

+P(X1 ≤ um, . . . ,Xk ≤ um | Cc,X0 > um)P(Cc | X0 > um).

As the data are dependent, P(X1 ≤ um, . . . ,Xk ≤ um | C,X0 > um) is approximately the
probability that max(X1, . . . ,Xk) ≤ um, conditional on C ∩ {X0 > um}, and for large k we
therefore have

P(X1 ≤ um, . . . ,Xk ≤ um | C,X0 > um)
.
= F (um)kθ = {1− Λm(u)/m}kθ ,

whereas for large k,
P(X1 ≤ um, . . . ,Xk ≤ um | Cc,X0 > um) ≈ 0,

because an observation that is not the last of cluster is highly likely to be followed by another
exceedance. Thus if we let a = limm→∞ P(C | X0 > um), we have

P(Tm/m > s) = P(Tm > -ms.)
.
= {1− Λm(u)/m}'ms(θ P(C | X0 > um) → a exp(−θλs), s > 0.

This distribution puts a mass of 1− a at s = 0 and therefore has mean

(1 − a)0 + a/(θλ) = a/(θλ).

! But as the expected number of exceedances is 1/λ, it must be the case that a = θ, which gives
the stated distribution.

! A ‘corrected’ argument is much messier, but is essentially the same as that above.
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Statistical consequences of clustering

! Clustering affects the return levels and their interpretation:

– if θ = 1, then annual maxima are independent but the ‘T -year-event’ has probability

(1− 1/T )T
.
= e→1 .

= 0.368

of not appearing in any period of T years;

– if θ < 1, then the T -year event has probability

(1− 1/T )T θ
.
= e→θ

of not appearing in a period of T years, giving (for example) e→0.1 .
= 0.905. The same number

of events will occur, on average, but they will occur together when θ < 1.

! Various estimators of θ exist. A simple procedure is

– identify clusters, e.g., by declaring that clusters are separated by runs of more than r
non-exceedances of u,

– let θ̂u = nc/nu, i.e., the number of clusters divided by the number of exceedances of u.
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POT fit to the Eskdalemuir data

> fpot(esk.rain, threshold=5)

Call: fpot(x = esk.rain, threshold = 5)

Deviance: 1058.954

Threshold: 5

Number Above: 356

Proportion Above: 0.0024

Estimates

scale shape

1.52239 0.06702

Standard Errors

scale shape

0.11488 0.05383

Optimization Information

Convergence: successful

Function Evaluations: 18

Gradient Evaluations: 6

The fit above does not allow for any clustering.
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POT fit to the Eskdalemuir data, allowing for clustering

> fpot(esk.rain, threshold=5, r=1, cmax=TRUE) # fit only to cluster maxima

Call: fpot(x = esk.rain, threshold = 5, cmax = TRUE, r = 1)

Deviance: 835.234

Threshold: 5

Number Above: 356

Proportion Above: 0.0024

Clustering Interval: 1

Number of Clusters: 272

Extremal Index: 0.764

Estimates

scale shape

1.63808 0.04183

Standard Errors

scale shape

0.14343 0.06322

Optimization Information

Convergence: successful

Function Evaluations: 18

Gradient Evaluations: 5

The fit above uses a simple (simplistic) approach to identifying clusters, which end when there are r
values below the threshold. Note that θ̂ = nc/nu = 272/356, and that as the estimation of the GP
parameters is based on the nc cluster maxima, the standard errors are appreciably larger than in the
other fit.
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POT fit to the Eskdalemuir data, allowing for clustering

> fpot(esk.rain,threshold=5, r=4, cmax=TRUE)

Call: fpot(x = esk.rain, threshold = 5, cmax = TRUE, r = 4)

Deviance: 777.1452

Threshold: 5

Number Above: 356

Proportion Above: 0.0024

Clustering Interval: 4

Number of Clusters: 243

Extremal Index: 0.6826

Estimates

scale shape

1.79613 0.01343

Standard Errors

scale shape

0.16476 0.06557

Optimization Information

Convergence: successful

Function Evaluations: 18

Gradient Evaluations: 4

The fit above uses r = 4. Note that θ̂ = 0.68 is smaller than when r = 1, and that the standard
errors for the GP parameters are still larger than before.
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Dependence of θ̂ on u

Unfortunately θ̂ (here estimated with r = 1) depends on u. The lack of a limit might throw doubt on
the theory . . .
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Clustering and return levels

! The consequences for estimation of return levels are that m dependent background observations
correspond to mθ matching observations, so in the previous formulae on slide 102 we replace m
by mθ (for maxima) and probability p = 1/Np for dependent observations by p/θ = 1/(Npθ)
matching observations (for exceedances), solving 1− FX(xp) = p/θ in the threshold case and

1− FX(xp) = 1−G1/(mθ)(xp)

when fitting maxima.

! To estimate the return level
xp

.
= u+

σ

ξ

[
(puθ/p)

ξ − 1
]
,

we estimate σ and ξ by fitting the GPD to threshold exceedances, and use

p̂u =
nu

n
, θ̂ =

nc

nu
,

where nc is number of clusters and nu is number of exceedances; thus p̂uθ̂ = nc/n.
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Return level estimation

! The figure below shows how θ affects estimates of the 5- (black), 20- (blue) and 100- (red) year
return levels for the Eskdalemuir data with threshold u = 5 mm.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

Extremal index, theta

R
e

tu
rn

 le
ve

l (
m

m
)

http://stat.epfl.ch slide 155

83



Ignoring clustering is dangerous . . .

! We fit the GEV to block maxima of a dependent series, and obtain fitted model Ĝ.

! If we ignore (or are ignorant of) any clustering, then we find the return level by solving

1− p = P(X ≤ xp) = FX(xp)
.
= Ĝ1/m(xp) =⇒ xp = Ĝ→1{(1− p)m}.

! But we should solve

1− p = P(X ≤ xp) = FX(xp)
.
= Ĝ1/(mθ)(xp) =⇒ xp = Ĝ→1{(1 − p)mθ}.

and clearly
Ĝ→1{(1− p)m} ≤ Ĝ→1{(1 − p)mθ},

because (1− p)m ≤ (1− p)mθ.

! Hence ignoring the clustering would lead to under-estimation of the return level.
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Summary

! Under a weak (and often plausible) condition D(un) on the dependence of distant extremes, the
GEV is the limiting distribution for the maximum of a stationary dependent process.

! We compare a stationary dependent series {Xj} such that Xj → F with a matching series

{X∗
j }

iid
→ F .

! The effect of local dependence is that extremes arise in clusters whose properties depend on the
extremal index θ, and

– the mean cluster size is 1/θ ≥ 1,

– the probability that a randomly chosen large event is the last in a cluster is θ,

– the mean interval between clusters is 1/θ times larger than for the matching series,

– the GPD marginal distribution of a threshold exceedance is the same as that of a cluster
maximum,

– the maximum of m observations in the dependent series is approximately that of mθ
observations in the matching series,

– estimates of return levels must be modified to allow for θ.

! Various empirical estimates of θ can be computed.
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