4 Complications slide 107

4.1 Introduction slide 108

Basic ideas

[0 Chapter 3 described ‘vanilla’ statistical analyses for rare events using the GEV, GPD and point

process methods.

[0 The basic derivations of these models assume that

X1, X BB o .
[0 In applications these assumptions are generally false:
— m is finite;
— the background data may show trend, seasonality or other forms of non-stationarity, so
Xj ~ Fj;
— time series are typically dependent, as cold weather, heatwaves, ...occur over several days;
— some (maybe subtle) selection mechanism may apply, e.g., when an analysis is performed
immediately after a rare event.
[0 This chapter will describe methods for detecting and dealing with these problems.
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4.2 Nonstationarity slide 110
Vanilla analysis of maxima
O Our previous analyses supposed that
— block maxima satisfy Y3,...,Y, i GEV(n,T,¢),
— exceedances of a threshold u satisfy X1 —u,..., X, —u id GPD(0,¢),
but often we observe additional variation, either due to
— systematic changes in the background data (e.g., due to trend or seasonality), or to
— haphazard variation (e.g., due to weather conditions) that we have not accounted for.

OO We'll pass most time looking at systematic changes.

[0 For an example of haphazard variation, consider annual maximum daily rainfall
M = max(Xi,...,X365), where X; is total rainfall on day j. On many days X; =0, so

M = maX(Xl, ce ,XN),
where N <« 365 is the (random) number of rainy days. If IV varies a lot from year to year, then
M might be much smaller in some years than in others, so the GEV is a poor model (remember
we derive it assuming that X; ~ F, where F'is continuous ...).
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A damp day in Venice
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Punta della Dogana and Santa Maria della Salute
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Annual maximum sea levels, 1887-2024

In October 2020, the MOdulo Sperimentale Elettromeccanico (MOSE) system was inaugurated: rows
of mobile gates are raised when particularly high tides are predicted, in order to limit how much water
from the Adriatic Sea can enter the Venetian lagoon. Data with MOSE operational are shown by
circles. The record: 196 cm in 1996.
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Ten largest annual sea levels, 1887-2024

In 1935, only the six largest values are available, and in 1922 only the largest value is available. The
data sources for 1887-1981 and 1982 onwards are different.
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Non-stationarity

[0 Obvious approach is to suppose that the GEV parameters can depend on external factors, i.e.,
Y ~ GEV(n¢, 7, &), where the dependence might be specified as

n(B) = Po+ Bit,

K
m(B) = Bo+ > {Bak—1cos(2mhkt/365) + Bay sin(2mkt /365)},
k=1
n(B) = Po+Bz(t),
n(B) = exp(Bo + Pit),
Bh t < th
gt(ﬁ) { /827 t> tOv
where z(t) is some physical quantity that varies over time (e.g., ENSO, NAO, or global average
temperature).

[0 In applications we typically find that
— the location parameter n varies,
— the scale parameter 7 might or might not vary,

— the shape parameter £ is constant (it is difficult to estimate, and anyway often is regarded as
an intrinsic aspect of the background process).
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Parametric inference

0 Example model specification: ; ind GEV(n¢, 7, &), where 1, 7, & depend on parameters /3.

O If y1,...,y, are assumed to be independent, then the log likelihood for 3 is

U(pB) = Z log g{ys; m(8), 7(8), &(B)},
t=1

where g is the GEV density.

O Maximization of £(3) yields maximum likelihood estimates and the observed information matrix,
from which we compute standard errors, confidence intervals, etc.

[J  We say that model M is nested within a model M if M; reduces to My by fixing (say) d
parameters. Then the corresponding maximised log likelihoods satisfy ¢1 > £y, and the likelihood
ratio statistic (or equivalently difference in deviances) is

W =2(y — o).

O If Mg is adequate, then asymptotic likelihood theory implies that W ~ Xév so values of W larger
than the 1 — o quantile of the X?z distribution would lead to a rejection of My in favour of My,
at significance level a.
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Model diagnostics
O IfY:~ GEV(n, 7, &) fort =1,...,n, then

1 — ii
7y = : log <1 + ftu> ¢ standard Gumbel,
t Tt

ie.,
P(Z; < z) =exp{—exp(—2)}, zeR, t=1,...,n.

~

O If we replace the parameters by their estimates 7; = 7:(3), etc., these results should still hold
(approximately) for the Gumbel residuals

~ 1 ~ Y — )
zt:710g<1+§tytAm>, t=1,...,n.
&t Tt

0 We use the Z; in diagnostic plots, e.g.,
— the probability plot, showing {]/(n +1),exp{—exp(—Zz))}; j=1,... ,n}, or
— the quantile plot, showing {(— log [—log{j/(n + 1)}] ,2(j)) ;7 =1,... ,n}, or
plots of the Z; against appropriate variables, to see if any patterns remain after fitting the model.
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Example: Venice sea levels, 1887-2019
O We ignore the data from 2020 onwards, when MOSE is operational.

[0 Analysis of maxima uses straight-line regression model,
m=Po+ Py, t=1,...,n=133,

with (z1,...,x133) = (1887 — 1900, ...,2019 — 1900)/100 chosen so that
— o equals the location parameter in the year 1900,
— [ denotes the change in maximum sea level over 100 years,
[0 We fit two nested models, both with constant scale and shape parameters, i.e.,
Mo: m=p0y, m=71, &=E,
My =00+ bz, =T, HG=E.
[0 The code prints a ‘deviance’ D = —2/ (or nllh= —Z) for the fitted model, which allows model
comparison using the likelihood ratio statistic:

w:2(l71—t70):D0—D1.
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Example: Fitting models

y <- venice$y[venice$year<2020,1]
x <- (venice$year [venice$year<2020]-1900)/100
(£fit0 <- evd::fgev(y))

Call: evd::fgev(x = y)
Deviance: 1193.487

Estimates
loc scale shape
106.517 20.050 -0.139

Standard Errors
loc scale shape
1.89487 1.29297 0.04412

Optimization Information
Convergence: successful ...

(fitl <- evd::fgev(y,nsloc=x)) # nsloc specifies the x variable for the non-statignary locat

Call: evd::fgev(x = y, nsloc = x)
Deviance: 1122.072

Estimates
loc 1loctrend scale shape
89.8087  35.0291 15.0816  -0.1023

Standard Errors
loc 1loctrend scale shape
2.34431 3.51218 0.96584 0.04071

Optimization Information
Convergence: successful ...
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Example: Venice sea levels, 1887-2019
Model-checking for fit to Venice maximum sea-level data. Left panel: Gumbel-scale residuals, Z;.
Right: ordered Z; plotted against Gumbel plotting positions, with pointwise (dot-dash) and overall
(solid) 95% confidence bands obtained by simulating 10,000 Gumbel samples.
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r-largest analysis

[0 The limiting joint density of the largest r order statistics Y1 > --- > Y, in a large sample is
r .
exp{—Aw)} x ] {—A(yj)}7 yi > >y,
j=1

-1 .
where A(y;n, 7€) = {1+&(y —n)/m}, "¢ and A(y) = dA(y)/dy.
O In the Venice data there are r; (usually 10) largest values in each year, say

yt,1>"'>yt,7”tv t:17"'7n7

so if the data for different years are independent, and if we again use parameters n:(3), 7(53),
&(B) in year t, the likelihood is

n

L(B) = [T exp [=A{ytrim(8), 7l H[ Myegim(8),m(8). &(8)}]

t=1
[0 To fit the model we just maximise the corresponding log likelihood, compute the observed

information matrix, and proceed as before . ..

[0 Of course this assumes that this is a reasonable model, which might be questioned: are the
background data really independent?
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r-largest: model-checking

00 The transformed values A(Y;) form a Poisson process of unit rate on the positive half-line:
0<A(Y]) <A(Y2) <A(Y3) <---,
o) -
A1), A(Y2) = A(V1) A(Y3) = A(Y2),... ~ exp(1).
00 Recall that if £~ exp(1), then —log E has a standard Gumbel distribution.
[0 Hence if the model is adequate and we replace the parameters by their estimates, the
—10g {K(}/})_K(ijfl)}a ] :27"'7
should be approximately independent Gumbel variables.
[ The theory above is OK in principle, but if the observations are heavily rounded, the values of
A(Y;) might be very similar, so that the approach above fails. Alternatively we might note that
J—1
AY}) = AV + S {A(ii1) — A} ~ Gamma(j, 1), j=1,...,7,
i=1
and then compare the ordered values of the A(Y}) for different years with quantiles of the gamma
distribution.
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Venice data

[0 We shall use the r largest observations to fit several models:
Mo: m=p0y, m=T1, &=E,
My =00+ bz, =T, &=,
M : 7]t=50+511't+521(t>1981), =T, &=¢E,
Ms: n = Bo+ iz + B3 cos(2mt/18.6) + Bysin(2nt/18.6), m =7, & =€.
0 Reasoning:
— we expect the baseline IID model My to be terrible (there is an obvious trend);
— we expect M to be much better than My, as it allows for the trend;
— if My improves significantly on M then the data sources pre- and post-1982 disagree;
— M3 is suggested by the discussion in Pirazzoli (1982, Acqua Aria) who suggested that an
18.6-year astronomical cycle may influence the maxima.
[0 We could add trend in the scale and shape parameters, but will avoid this here.
0 We take r = 2 for now.
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Example: Venice sea levels

Code to fit the models using the function rlarg.fit of the ismev package:

y <- venice$yl[venice$year<2020,]
year <- venice$year[venice$year<2020]
X <- cbind(x, (year>=1982),cos(2xpixyear/18.6) ,sin(2*pi*year/18.6) )

\4

head(y) # 10 largest values for each year, starting in 1887
yl y2 y3 y4 y5 y6 y7 y8 y9 yi10

94 93 90 86 85 82 81 80 79 76

90 84 84 78 75 75 72 72 69 69

97 75 74 72 72 68 68 68 67 67

107 104 85 81 79 72 72 70 70 67

87 72 70 67 66 66 65 64 63 62

86 77 74 70 70 69 69 68 68 66

D O WN -

\4

head(X) # matrix of covariates for different fits

X
[1,] -0.13
[2,] -0.12
[3,] -0.11
[4,] -0.10
[5,] -0.09
[6,] -0.08

-0.9541393 0.29936312
-0.9994295 -0.03377414
-0.9317526 -0.36309386
-0.7587581 -0.65137248
-0.5000000 -0.86602540
-0.1847261 -0.98279005

O O O O O O

fit0 <- ismev::rlarg.fit(xdat=y, r=2)

fit2 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,2))

fit3 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,3,4))

fitl <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1)) # mul says which columns of
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Fits of M, and M,

> fit0 <- ismev::rlarg.fit(xdat=y, r=2)
$conv

(11 0

$nllh

[1] 1035.521

$mle

[1] 112.1400606 18.3991733 -0.1485854
$se

[1] 1.48482972 0.80384786 0.03128211

> fitl <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1))
$model

$model [[1]]

(1] 1

$model [[2]]

NULL

$model [[3]]

NULL

$link

[1] "c(identity, identity, identity)"

$conv

(11 0

$nllh

[1] 973.297

$mle

[1] 93.946101 31.725728 14.160470 -0.103406

$se

[1] 1.68660910 2.42460867 0.65001011 0.03125164
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Fits of M, and M3

fit2 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,2))
$model

$model [[1]]

(1] 1 2

$conv

(11 o

$nllh

[1] 969.336

$mle

[1] 91.7010233 41.0735757 -9.7734237 13.8874345 -0.1025608
$se

[1] 1.84707056 4.05490122 3.40265002 0.64056193 0.03303069

> fit3 <- ismev::rlarg.fit(xdat=y, r=2, ydat=X, mul=c(1,3,4))
$model

$model [[1]]

[1] 1 3 4

$conv

[11 0

$nllh

[1] 973.0675

$mle

[1] 93.8443140 31.9199292 -0.4317245 -0.7943716 14.1372635 -0.1050128
$se

[1] 1.69570726 2.44300955 1.36448615 1.34041204 0.64842570 0.03166116
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Example: Venice sea levels, 1887-2019
Summaries of fitted models for Venice sea level data analysis, with estimatesgps:
Model r -2/ 13 7 (em) By (ecm) By (cm/century) f2 (cm) B3 (ecm) [y (cm)
My 1 1122.07 —0.1020.041 15.1097 89.82.3 35.03 5
My 2 1946.59 —0.103p031 14.2065 94.01.7 31.72.4
My 3 260549 —0.1060025 13.3052  95.914 31.51 9
My 4 3185.07 —0.104p.022 12.80.46 96.813 31.31.7
My 9 5263.20 —0.0900.016 11.50.36 98.210 30.31.1
My 2 2071.04 —0.1499.031 18.4p.80 112.115
My 2 1946.59 —0.103p031 14.2065 94.017 31.72.4
Mo 2 1938.67 —0.103p033 13.9064 91.719 41140 —9.834
M3 2 1946.14 —0.1050032 14.1p65 93.817 31.92.4 —0.43146 —P.791.34
My 2 192437 0.057p063 10.6087  93.229 40.043 —8.43
Note that:
O the log likelihoods are only comparable for the same values of r, because different values of r use
different subsets of the data;
0 if the data were independent, we'd expect the SEs for 7 = 1 to reduce by factors of roughly 2 and
3forr=4andr=29;
O there is strong evidence for trend (surprise!), a change due to the data sources, and £ < 0;
[0 there is no evidence of the astronomical cycle.
http://stat.epfl.ch slide 128
Example: Venice sea levels, 1887-2019
e 7]
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Largest ten annual sea levels at Venice, with fits from models My (red), M; (blue), My (purple),
and M3 (green), when r = 2.
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Example: Venice sea levels, 1887-2019

Empirical

Empirical
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Residual plots for fit of M; with r = 2: Top row: comparison of K(yj) with corresponding gamma
distributions for j = 1,2,3. Bottom row: comparison of A(y;+1) — A(y;) for j = 1,2,3. The model
does not seem to fit very well!
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Example: Venice sea levels, 1887-2019

Empirical

Empirical
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Residual plots for fit of Mgy with 7 = 2: Top row: comparison of K(yj) with corresponding gamma

distributions for j = 1,2,3. Bottom row: comparison of /AX(yjH) — K(yj) for j = 1,2,3. The model
does not seem to fit very well!
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Haphazard variation

[0 Above we modelled systematic variation by allowing the parameters to depend on known
quantities.
[0 There may be haphazard variation that can be modelled by adding extra randomness.
[0 Suppose that conditional on ¢, the data have rate eA(y), where € ~ Gamma(v,1/v), i.e.,
Vl/
fle) = F(V)es”_le_”a, e>0, v>0,
which is the usual gamma density with parameters a = v, A = v, so E(¢) = a/\ =1,
var(e) = a/A? = 1/v — 0 as v — oo. Hence the baseline model corresponds to v = oo.
0 The marginal density for Y7 > --- > Y, is then
o T
. (v +r) 1
f(y177y):/ f(ylv'--vy ‘a)f(&“)d&‘:: {_A(y)} vtr?
© ' 1] P (14 Ay ()7
so in particular the maximum has density
Flam) = 1Ay} ———
Y1) =121 o1
{1+ Adyn) w3
i.e., a model with parameters (1, 7,&,v), where v — oo gives the basic model.
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A better model?

[0 Take r =2 and fit
My e =Po+ Prae+ Pol(t >1981), m=7, &G=E v,
gives the results shown on slide 128:
— there is a big reduction in —20 , so the model is a clear improvement on the others: it is
worthwhile to include v;
— U =1.72¢¢3, giving strong evidence of overdispersion relative to the baseline model, with ¢
having standard deviation 7~1/2 = 0.76;
— the estimates of the (s are similar, but 7 is smaller and now E;u 0, because including v
accounts for some of the variation not accounted for in the other models;
— most of the standard errors are larger, because of the additional variation that v
accommodates.
O Residual plots on the next slide are (somewhat) better, though the largest values are still too big
relative to the model.
http://stat.epfl.ch slide 133

69



Example: Venice sea levels, 1887-2019
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Residual plots for Venice data fit of My with » = 2: Top row: comparison of K(yj) with
corresponding F' distributions for j = 1,2,3. Bottom row: comparison of A(y;11) — A(y;) for
j =1,2,3. The model fits better than before, but still the largest values are not well modelled.
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Measures of risk
[0 Under non-stationarity the quantiles and thus the return levels vary with time, so the
interpretation as ‘the level exceeded once on average every T' years' needs thought ...

[0 Suppose there are m 11D background observations in each block (year, say), but that their
distributions F; differ for the different blocks, and let M1 be the maximum for T blocks.

0 If the maximum in year ¢t has GEV distribution G, then F} =~ Gi/m, and we solve

1T

T v T
l-p= {HFt(xp)} - {Hth/m(wp)} = P(Mrp < xp)l/(mT)-
t=1 t=1

[0 Likewise, in the POT setup, we suppose that independent observ_ations X have thresholds u;,
exceedance probabilities p,; and GP distributions H;(x) = 1 — H (), and then solve

1/mT

mT
l_p: H{l—pu7ﬁj(wp—u])} :P(MT Swp)l/(mT).
7j=1

0 Note that
- P(X > x,) will vary over time, so z,, may not be a very useful summary of risk,
— both formulae reduce to the previous ones when the data are stationary,

— there are no explicit formulae for x,,, which must be found numerically.
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Comments

[0 Similar techniques are applicable for the threshold exceedance and point process models, but the
threshold may need to be time-varying and thus needs care.

[0 Using the r-largest model may be preferable, as the threshold is replaced with a choice of r.

[0 Under the GPD, changing the threshold u — u’ changes the scale parameter:
Oy = Oy = Oy + g(ul - u),

so, for example, the formulation
(0w, €) = (9(z1), h(x2))

at threshold « will become

(0w, &) = (9(=1) + h(@2)(u — u'), h(=2)) ,

at threshold v/, so interpretation depends on threshold—undesirable.

O GEV, r-largest and Poisson process fits use the parameters (n, 7, ), invariant to type of model,
which is preferable.

[0 In some investigations it is preferable to use the GP model: do increasing rainfall maxima come
from increases in the number of days with heavy rainfall, but no changes in the amounts, or
increased amounts when it rains?
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4.3 Dependence slide 137

Modelling issues

0 Environmental time series data typically show:

— long—term trends (e.g., gradual climatic change);

seasonality (e.g., annual cycles in meteorology);
other forms of non—stationarity (e.g., the effect of ENSO or NAO); and

short term dependence (due to volatility, storms, ...).
0 We have discussed non-stationarity. Now we discuss dependence. In brief:

— the previous limiting theory for maxima also applies, with small changes, provided long-range
dependence of extremes is sufficiently weak; but

— clustering of extremes due to short range dependence arises and must be dealt with.

O If the background data were independent, then the indicators I(X; > u) would be IID Bernoulli
variables with probability p,,, say, and thus

— forany h=1,2,... we would see
P(Xt+h >u ’ Xt > U) = P(Xt+h > u) = Pu;

— intervals between exceedances would be [ID geometric variables with mean 1/p,
(approximately exponential for small p,,).
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These data show:

dependence.

wn

10

Hourly rainfall (mm)

Example: Eskdalemuir rainfall
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[0 apparent stationarity (with small seasonal changes?);

O long-range independence (rain in 1975 is independent of rain in 1980 ..

I
1985

[0 short-range dependence, owing to clustering of hours with heavy rain?

F

It seems safe to assume weak dependence of extremes at long ranges, but we need to allow for local
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Extremogram

red line).
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Independent data would have 7, (u)
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The extremogram for a stationary time series {X;} estimates

= P(Xy > u) for all h (blue line in picture, upper 95% point is

O This is the analogue of the ACF in conventional time series analysis,

[] estimated using frequencies in place of probabilities —

=P(Xeyp >u| Xy >u), h=12,....

O beware poor sampling properties of 7, (u) (so don't worry about values for high lags).

http://stat.epfl.ch

72

slide 140



Intervals between exceedances
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Interval Exponential plotting position
The intervals between exceedances should be approximately exponentially distributed, but we see too
many small intervals, due to clustering.
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Definitions

Definition 19 A time series { X} is said to be (strictly) stationary if, for any finite subset A of Z,
the sets of variables X 4 and X}, 4 have the same distribution for all h € Z. In particular this means
that the marginal distribution of X; is invariant to location shifts, i.e.,

P(X; <xz)=F(z), jeZxeckR.

Definition 20 The matching series for a stationary time series {X;} with X; ~ F is the
independent series { X'} for which X Y.

Definition 21 /f F' is a continuous CDF then {u,,} is a threshold sequence (for F') if there exists
A € (0,00) such that lim,,_,oo m{1 — F'(um)} = A.

O If M = max(Xy,...,Xn) where X id F, and if the extremal types theorem (ETT) applies for
sequences {a,,} > 0 and {b,,}, then taking wu,, = b, + a;,x gives
z—n\ V¢
A () = m{1l — F(upm)} = m{1l — F(by, + amx)} — <1 + ET) = A(x),
Jr
say, so {u,} is then a threshold sequence if A(z) > 0.
O If there is no A for which a threshold sequence exists, then the ETT does not apply.
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D(uy,)

The usual condition used to impose near-independence of distant extremes is D (u,,):

Definition 22 Let A, B be subsets of {1,...,n} such that max A < min B — [ for some positive
integer [, and let M 4 < u denote the event max;c 4 X; < u, etc. Then D(uy,,) is satisfied if

[P(Ma < un, M < un) — P(Ma < un)P(Mp < up)| < aln, 1),
where a(n,l,,) — 0 for some sequence l,, = o(n) as n — oo.

Under D(u,,), maxima of subsets that are sufficiently separated are almost independent, where
‘sufficiently separated’ means that as n — oo, the gap [,, between A and B satisfies {,,/n — 0.

Theorem 23 Let X1,..., X, be a sequence from a stationary series with marginal distribution F'
that satisfies D(u,,) for a threshold sequence u,, = b, + a,x. Then if

P{max(Xy,...,X,) <u,} = G(z), n — oo,

where G is non-degenerate, G is a GEV distribution.
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Idea of Theorem 23

O We split Xy,..., X, into k, blocks of lengths r,,, where k,,,r, — 00 as n — o0;

[0 we ensure that the block maxima are at least [,, observations apart, where [, — oo, so if D(u,,)
applies these maxima become independent for large n;

O then we apply the ETT to the k,, (nearly independent) block maxima, and show that if these have
a limiting distribution, it must be GEV.
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Implications of Theorem 23

[0 The assumptions of Theorem 23 are weak, so it should hold in many applications.

[0 Hence we aim to understand the effect of local dependence by studying the properties of the
maximum of a ‘short’ block X7,..., X, of neighbouring observations, which we compare with
the maximum of an independent series { X7} with the same marginal distribution as {X;}.

O Let X7 id F, where X; ~ F', i.e., F'is the marginal distribution of {X}, and let
M =max(X{,..., X ), M, =max(X1,...,X,).
[0 We first consider an example.

Example 24 (Moving maximum process) Let Z; e F(z) =exp(—1/z) for z > 0, and fora > 0
define

Xo =2y, Xj= (a—l—l)*l max(aZj_l,Zj), j=1...,n.

Show that
P(My/n <x) = P(M;/n<x)’, n— oo,

where 0 = max(1,a)/(a + 1) lies in the interval [1/2,1].
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Note to Example 24

00 The marginal distribution of X is unit Fréchet:
P(X;<z) = Pl{aZj-1 <(a+1)z,Z; < (a+1)x}

_ exp{—ﬁ}exp{—m}:exp(—l/:ﬂ), 2> 0,

O If X{,X;,... are independent unit Fréchet variables and M} = max(X7,..., X}), then

P(M;/n < @) = [exp{—1/(na)}]" = exp(~1/a),

whereas M,, = max(Xj,...,X,,) satisfies
P(M,/n<z) = P(X; <nz,...,X, <nzx)
= P{aZy < (a+1nz,Z; < (a+ )nz,aZ; < (a+ 1)nz,...,Z, < (a+ 1)nzx}
n—1
= P{aZy < (a+ 1)nz} H P{Z; < (a+ 1)nz/max(1,a)} | P{Z, < (a+ 1)na
j=1

because the Z; are independent. This implies that

= exp(—6,/z),
where
6, — a+ 1+ (n—1)max(1,a) o= max(1,a) c[/2.1], n— oo
n(a+1) a+1
0 Hence

P(M,/n < z) — exp(—0/z) = P(M}/n < z)’, n — oo,
so although X D X;,
P(M* < z) = P(M, < 2)"? <P(M, < z),

i.e., M, is stochastically smaller than M.
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Moving maxima

Realisations of the moving maximum process of Example 24 with a = 0,0.8,1,1.25. In each case the
marginal distribution is unit Fréchet. The maxima show increasing clustering as a — 1.

a=0 a=0.8
e E
= e
371 371 ~
..
o . oo o1 % %
<o, ®ee|  x] % % -
o . o o .
4 PR B -,
27 . .:. .'.... 0: . 37 “ . o .
M -,
-] ° -]
e T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
a=1 a=1.25
o] o o]
37 37
- 4 ¢
o_| o_| L
= le - . - o .-"'
1 - -~ i . g e S
0 e o e, ° | & .
=] ¢« . = K .c’
. -
ST T T T T T ST T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
http://stat.epfl.ch slide 146

Effect of local dependence

Theorem 25 Let {X;} be a stationary process such that X; ~ F and let X7 N F. Set

M, = max(Xy,...,X,), M} =max(X],...,X}) and let {a,} > 0 and {b,} be sequences of real
numbers. Then there exists a non-degenerate distribution function G such that

P{(Myp —bp)/an <y} = G(y) = exp{-=A(y)}, n — oo,
if and only if
P{(My, —bn)/an <y} = G*(y) = exp{-=A"(y)}, n — oo
If so, G(y) = {G*(y)}? or equivalently A(y) = 0A*(y). We call § € (0,1] the extremal index.
O As G* must be GEV(n*, 7*,£¥), say, G is also GEV, with parameters
§=¢, T="0 n=n" O -1/ <

— the shape parameter is unchanged by the dependence but < n*, and

— M, is stochastically smaller than M, i.e., dependence tends to reduce the sizes of the
extremes for a series of given length, because

lim P(M, < b, +any) = Gly) = {G*(y)}Y > G*(y) = lim P(M;; < b, + any).

n—oo n—o0
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Implications

O As m — oo for independent data, the rescaled intervals T;,,/m between exceedances are
independent and Poisson process properties imply that

P(T,,/m<s)—=P(S<s)=1-—e" s>0.
[0 In the corresponding dependent case it can be shown that
P(T,,/m<s)—=P(S<s)=1-0e? s>0,

i.e., in the limit,

— exceedances arise in clusters of mean size 1/6 € [1, 00),

— @ is the probability that a randomly-chosen observation is the last of a cluster;

— the expected interval E(S) between exceedances is unchanged,

— but E(S|S >0)— 1/(6)), so the mean interval between clusters increases by 1/,

— the maximum of m dependent data has the same limiting distribution as the maximum of
mf < m independent data.

0 In fact a cluster maximum has the same limiting distribution as a randomly-chosen exceedance, so
there is no bias in fitting the GPD only to cluster maxima, if we can identify clusters ...
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Note to Implications
[0 In the independent case, consider exceedances of a threshold sequence u,, = b,, + au. As the
X are independent and the process is stationary, the interval T;,, between two successive
exceedances satisfies
P(Twm >k) = P(Xi<umy. ., Xp <t | Xo > )
= P(Xl < Uy ey Xg < um)
= F(um)k
= {1-Anw)/m}*, keN,
where A, (u) = m{1l — F(up)} — A(u) = A, say, as m — oo. For any s > 0, |[ms|/m — s as
m — 00, SO
P(Ty/m >s) = P(T, >ms)
= P(T, > |ms])
= {1 Au(u)/mylm
— exp(—As), s>0.
Hence T,,/m L5~ exp(A).
[0 In the dependent case, we argue heuristically as follows. Let C denote the event that the
exceedance at j = 0 is the last exceedance in a cluster. Then
P(T,,>k) = P(Xy<upm, .., Xp <tupm | Xo > upm)
P(X1 <tum,..., Xk Sum | C, Xo > um)P(C | Xo > um)
—|—P(X1 S Uy ooy X < Uy | CC,X() > um)P(CC | Xo > um)
As the data are dependent, P(X) < ty, ..., Xx < up | C, Xo > up,) is approximately the
probability that max(Xy,..., Xx) < um,, conditional on C N {Xy > u,,}, and for large k we
therefore have
P(X1 < - eos X < tm | C, Xo > ) = Fum)* = {1 — A (u)/m}™ |
whereas for large k,
P(X1 < Uy« - - ,Xk < U, ’ CC,XO > um) ~ O,
because an observation that is not the last of cluster is highly likely to be followed by another
exceedance. Thus if we let a = lim,, o P(C | Xo > w;,), we have
P(Ty/m > s) = P(Tp, > [ms)) = {1 — Ap(u)/m} ™ P(C | Xg > um) — aexp(—0As), s> 0
This distribution puts a mass of 1 — a at s = 0 and therefore has mean
(1 —=a)0+a/(ON) = a/(ON).
[0 But as the expected number of exceedances is 1/, it must be the case that a = 6, which gives
the stated distribution.
[0 A ‘corrected’ argument is much messier, but is essentially the same as that above.
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Statistical consequences of clustering

[0  Clustering affects the return levels and their interpretation:

— if # = 1, then annual maxima are independent but the ‘T-year-event’ has probability
(1-1/T)" =e ' =0.368

of not appearing in any period of T years;
— if 8 < 1, then the T-year event has probability

(1-1/T)T0 = 7°

of not appearing in a period of T years, giving (for example) e~%! = 0.905. The same number
of events will occur, on average, but they will occur together when 6 < 1.

[0 Various estimators of # exist. A simple procedure is

— identify clusters, e.g., by declaring that clusters are separated by runs of more than r
non-exceedances of u,

— et §u = n./Ny, i.e., the number of clusters divided by the number of exceedances of w.
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POT fit to the Eskdalemuir data

> fpot(esk.rain, threshold=5)

Call: fpot(x = esk.rain, threshold = 5)
Deviance: 1058.954

Threshold: 5
Number Above: 356
Proportion Above: 0.0024

Estimates
scale shape
1.52239 0.06702

Standard Errors
scale shape
0.11488 0.05383

Optimization Information
Convergence: successful
Function Evaluations: 18
Gradient Evaluations: 6

The fit above does not allow for any clustering.
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POT fit to the Eskdalemuir data, allowing for clustering

> fpot(esk.rain, threshold=5, r=1, cmax=TRUE) # fit only to cluster maxima

Call: fpot(x = esk.rain, threshold = 5, cmax = TRUE, r = 1)
Deviance: 835.234

Threshold: 5
Number Above: 356
Proportion Above: 0.0024

Clustering Interval: 1
Number of Clusters: 272
Extremal Index: 0.764

Estimates
scale shape
1.63808 0.04183

Standard Errors
scale shape
0.14343 0.06322

Optimization Information
Convergence: successful
Function Evaluations: 18
Gradient Evaluations: 5

The fit above uses a simple (simplistic) approach to identifying clusters, which end when there are r
values below the threshold. Note that 6 = n./n, = 272/356, and that as the estimation of the GP
parameters is based on the n. cluster maxima, the standard errors are appreciably larger than in the
other fit.
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Deviance: 777.1452

Threshold: 5
Number Above: 356
Proportion Above: 0.0024

Clustering Interval: 4
Number of Clusters: 243
Extremal Index: 0.6826

Estimates
scale shape
1.79613 0.01343

Standard Errors
scale shape
0.16476 0.06557

Optimization Information
Convergence: successful
Function Evaluations: 18
Gradient Evaluations: 4

Call: fpot(x = esk.rain, threshold = 5,

POT fit to the Eskdalemuir data, allowing for clustering

> fpot(esk.rain,threshold=5, r=4, cmax=TRUE)

cmax =

The fit above uses  — 4. Note that 8 = 0.68 is smaller than when 7 = 1, and that the standard
errors for the GP parameters are still larger than before.

= 4)
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Dependence of 0 on u

the theory ...

0.8
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0.6

Extremal Index
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!

0.2

Unfortunately ) (here estimated with = 1) depends on u. The lack of a limit might throw doubt on

Threshold
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Clustering and return levels

[0 The consequences for estimation of return levels are that m dependent background observations
correspond to mé matching observations, so in the previous formulae on slide 102 we replace m
by mé (for maxima) and probability p = 1/N,, for dependent observations by p/6 = 1/(N,0)
matching observations (for exceedances), solving 1 — Fx(xp) = p/6 in the threshold case and

1= Fx(zp) =1- GHemo (zp)

when fitting maxima.

0 To estimate the return level o

§

we estimate ¢ and & by fitting the GPD to threshold exceedances, and use

zp =u+ — |[(pf/p)* — 1],

e

n Ny

S
IS

I
|
)

where n. is number of clusters and n,, is number of exceedances; thus p,0 = n./n.
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Return level estimation
0 The figure below shows how 6 affects estimates of the 5- (black), 20- (blue) and 100- (red) year
return levels for the Eskdalemuir data with threshold u = 5 mm.
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Ignoring clustering is dangerous ...
[0 We fit the GEV to block maxima of a dependent series, and obtain fitted model G.
O If we ignore (or are ignorant of) any clustering, then we find the return level by solving
1—p=P(X <) = Fx(z,) = G/"(x,) = z, =G {(1-p)™}.
0 But we should solve
1—p=P(X <) = Fx(z,) = G/ (z,) — 2, =G {1 -p)™}.
and clearly R R
GHA-p™y <G HO - p)™,
because (1 —p)™ < (1 — p)™?.
O Hence ignoring the clustering would lead to under-estimation of the return level.
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Summary
O Under a weak (and often plausible) condition D(u,) on the dependence of distant extremes, the
GEV is the limiting distribution for the maximum of a stationary dependent process.
0 We compare a stationary dependent series { X;} such that X; ~ F' with a matching series
o iid
{Xj} ~ F.
[0 The effect of local dependence is that extremes arise in clusters whose properties depend on the
extremal index 6, and
— the mean cluster size is 1/6 > 1,
— the probability that a randomly chosen large event is the last in a cluster is 6,
— the mean interval between clusters is 1/6 times larger than for the matching series,
— the GPD marginal distribution of a threshold exceedance is the same as that of a cluster
maximum,
— the maximum of m observations in the dependent series is approximately that of mé
observations in the matching series,
— estimates of return levels must be modified to allow for 6.
[0 Various empirical estimates of 8 can be computed.
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